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Abstract: The fundamental principles of density functional theory are applied to achieve a better understanding
of various theoretical tools for describing chemical reactivity. Emphasis is given to the Fukui function, the
central site reactivity index of density functional theory, which is approached through its own variational
principle. A maximum hardness principle is then developed and discussed. To make contact with an earlier
proof of a maximum hardness principle, changes in chemical potential are considered.

I. Density Functional Theory where po(F) is the exact N-electron ground-state density and
Ey is the exact ground-state energy for the system with N
electrons and external potential(r).° Hence, in the presence
of vo(F), the energy oN electrons arranged “wrong” (in such a
way thatp(r) = po(r)) is always greater than the energy Nf

| electrons arranged “right” (with densip(r)). One can regard

p() as the density for some excited state (not necessarily an

eigenstate) of the system[p] is the expectation value of the

energy in that state.

Chemists strive to discover theoretical principles for under-
standing chemical reactivity. Useful for this endeavor is density
functional theory (DFT},2which has provided justification for
existing chemical principles and inspired new chemical prin-
ciples. DFT reactivity indexes such as the electronic chemica
potential>3the chemical hardne$s® and the Fukui functiof®
appear throughout reactivity theory. In this paper we use the
fundamental variational principles of DFT to systematically

extend the understanding of these indexes. The HohenbergKohn theorems may be clarified by con-
Density functional theory is founded upon two theorems of sidering the “thermodynamic analogy”, a perspective that is
Hohenberg and Kohn: exploited throughout ref 1. As a simple example of this

(1) The ground-state electron density(f), determines  approach, consider an ideal gas of molecules, each with mass
everything about a chemical systénn particular, the density M. If we know the equilibrium mass density of the gas as a

determines the number of electronN[f] = [p(F)dr)), the function of the position in space, we can determine “everything”;
external potentialyo() (ordinarily just the potential due to the in particular, we can find the volume and shape of the
atomic nuclei), and the Hohenberfohn functional F[p] (the “container” (which is analogous to the external potential, since
sum of the electronic kinetic energy function@[p], and the the positive charges on the atomic centers serve to “confine”
electron-electron repulsion energy functionghd p]). The total the electrons) and the number of molecules in the gas (by
energy functional is thén integration of the mass density and divisionMy. This is the
analogue of the first Hohenberd¢{ohn theorem. Now, suppose
5VO[P] = F[p] + fp(?)vo(T)d? 1) we know that there ar ideal gas molecules in a container of

volumeV. It is statistically possible that all of the gas molecules
o o _ ~ will be in the “top half” of the container, but densities associated
The variational principle for the total energy functional is  with this arrangement have higher free energy than the ground-

established by Hohenberg and Kohn’s second theorem: state density. This represents the analogue of the second

(2) For any trial N-electron densitya(r), Hohenberg-Kohn theorem.

&,[p] = €, [pl = Eqlp] ) [l. Mathematical Preliminaries

(1) Parr, R. G.; Yang, W. TDensity-functional Theory of Atoms and Just as many useful results of thermodynamics are derived
Molecules Oxford University Press: New York, 1989. i i ;

(2) Droizler. R. M. Gross, E. K. U.Density-functional Theoty by observing how state.functlons cha_mge w.hen one varies the
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(4) Parr. R. G.: Pearson, R. G. Am. Chem. Sod983 105 7512. by observing how the vanouslstate functions, espeqally the total
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o, [od
Zfé(r)

wherede, [ pol/dp(F) symbolizes the functional derivative of the
energy functional,e,[p], with respect to the densityp(r),
evaluated at the densip(r) = po(r). Equation 3 is analogous
to the equation g(x) = (dg(Xp)/dx)dx in differential calculus,
and just as the derivative may be defined through this last
equation, the functional derivative may be defined through eq
3. 0, [pal/op(F) is defined as that function which maps
infinitesimal variations of the density abou(r) to the
appropriate variation in the energy functiodal.

The analogies between differential calculus and “functional
calculus” may be extended further by considering delta function
perturbationspp(f) = €d(f — To), in eq 3. This leads to an
explicit expression for the functional derivative,

o, [ [, oo(T) + ed(F = Tol — &, [po(F)]

—=1Iim 4)
(5p(r0) 0 €

This equation indicates that the functional derivative of a

guantity at a poinfo, represents how that quantity would change

if the electron density were increased a tiny amoumpalhe
similarity between eq 4 and the result from differential calculus,

{g(xo +e) - g(Xo)}
€

de, [] op(T) dr

®)

dg(xo)
dx

= lin ®)
indicates that results in functional calculus such as the product
rule, quotient rule, chain rule, and Taylor series expansion can
be derived through straightforward adaptation of standard
derivations in differential calculus. Appendix A of ref 1 details
this approach. Of particular importance for the present purposes
is the functional Taylor series, which for the energy functional
is

o, [pol
evo[po+Ap]=svo[p01+ f 5p(r) e AT+

[ f So(T ) 5 (Q Ap(T)Ap(_r") dr df' + ... (6)
Truncation of the expansion at second order yields “second-
order density functional perturbation theory”. In this paper, we
assume that all Taylor series converge.

We conclude the introduction with some notes about the
existence of functional derivativesg(kg)/dx is said to exist if
and only if the derivative from above (with> 0),
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the use of one-sided functional derivatives, which in analogy
to egs 7 and 8 are given by

o, Tod {e%[po(?)ﬂa(f—?o)] -
= |im
6_,0+/7
©)

Vo

op(T o) €
For notational and conceptual simplicity, during the remainder
of the paper we assume that all functional derivatives exist and
are well-defined; in particular, we assume that functional
derivatives from above and below are equal. The modifications
required to accommodate the zero-temperature grand canonical
ensemble formulation of,[p] are summarized in the Appendix.

evo[po(?)]}

[ll. Principles Governing Charge Transfer

Chemical reactions often involve some charge transfer
between reactant molecules (or between two different parts of
one molecule). The active sites of a reactant molecule are usually
places where the addition (or loss) of electrons is favorable.
So we may approach the understanding of chemical reactivity
by addressing the questiowhere is the best place to add an
electron to a molecule?

To begin, consider the addition of a small fractianof an
electron to theéNg-electron system with external potentig(r)
andexactground-state densityy,(F). If 7 is small enough, the
Taylor series (eq)or &,,[p] may be truncated at second order,

&, lon, + Aps] = Edlon ) + ulpy ] +
Yo f [nlong T T'1Ap4(T)Ap,(F) dT dF’ (10)

This formula uses notations from Table 1. The variational
principle (eq 2) tells us that the ground state of tNg ¢ 17)-
electron system is the state with lowest total energy.

For a given value of, the first two terms in eq 10 are site-
independent. Accordingly, minimizing the energy is equivalent
to minimizing the last term in eq 10. That ihe best way to
add arth of an electron to a molecule is to add it to the place
defined by that functionAp4.(F), that minimizes

W[PNO;APﬁ = ff’?[PNO;TvT']APﬂ(T)APﬂ(T’) dr dr’
(11)

subject to the constraint thgtAp..(f) df = AN = 7. Note that
the two-variable hardness kerneilon, T, T'], is unchanged
during the minimization process.

Introducing the normalized function, @( we rewrite
Ap+(F) as g(f) and observe that the normalized function,
Omin(f), which minimizes eq 11 is invariant to changeszin
Choosingr = 1 recovers the variational principle of Chattaraj,
Cedillo, and Parf! Takingz < O allows one to apply egs 10
and 11 to electron removal.

+ _
dg'(x0) _ . { 9+ €) g(xo)} @
dx e—0t €
equals the derivative from below (with< 0),
dg (o) _ { 9o+ €) - g(xo)} @)
dx e—0~ €

Within the popular zero-temperature grand canonical ensemble
formulation of density functional theory, the derivatives from
above and below in eq 4 are not equal, thereby necessitating

(10) The situation is actually more complicated than this. The functional
derivative only exists for so-called “conventional density variations”, that
is, variations in the density which are associated with a first-order change
in the wave function of the system. See: Perdew, J. P.; LevyPMs.

Rev. B 1985 31, 6264.

(11) Berkowitz, M.J. Am. Chem. Sod.987, 109, 4823.

(12) Mulliken, R. S.J. Chem. Phys1934 2, 782.

(13) Sanderson, R. TSciencel951, 114, 670.

(14) Sanderson, R. TChemical Bonds and Bond Energicademic:
New York, 1976.

(15) Parr, R. G.; Bartollotti, L. JJ. Am. Chem. Sod.982 104, 3801.

(16) Pearson, R. Gl. Am. Chem. S0d.963 85, 3533.

(17) Chattaraj, P. K.; Lee, H.; Parr, R. GB.Am. Chem. S0d.991, 113
1855.

(18) Pearson, R. @norg. Chim. Actal995 240, 93.

(19) Pearson, R. Gl. Chem. Educl1987, 64, 571.

(20) Zhou, Z.; Parr, R. GJ. Am. Chem. So0d.989 111, 1371.

(21) Zhou, Z.; Parr, R. GJ. Am. Chem. So0d.99Q 112, 5720.

(22) Parr, R. G.; Chattaraj, P. K. Am. Chem. Sod.991, 113 1854.

(23) Pearson, R. GAcc. Chem. Red.993 26, 250.

(24) Parr, R. G.; Zhou, ZAcc. Chem. Red.993 26, 256.
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Table 1. Summary of Notation for Section Ill

quantity definition and symbol notes and key concepts
1 chemical potential _[oE the chemical potential is the negative of the Mulliken electronegatiiity;
“= (8_N)V ) electronegativity equalization follows from the fact that a global
° constarit13-15
2 chemical hardness ( 82E) hard/soft acid/base theofyé18 maximum hardness princigfe2®
n=\-
aN? v(F)
3 Fukui functiori _ ap(T) o site reactivity index; reduces to frontier molecular orbital densities in
f(F) =[S =L the absence of orbital relaxatiSn
N v \Ovo(T)y
4 modified potential Ulp(T);7] = v[p(T);T] —u v[p(T);f] is the external potential for which(r) is theN-electron
ground-state density
5 stationary principle ¢, [p] whenpo(T) is the ground-state density for the external potential
6—2?) = vy(F) — u[p(T);F] vo(T), U(Y) = u — vo(T) and hencee,,[p]/0p(1) = u
p
6 hardness kernél 8% lod variational principle for the Fukui function (eqs 11 and 4%
Yo Berkowitz—Parr relatiof”

Nee(T)T.T'] = on(F)0p(F)

Maintaining the choice = 1 in eq 11, we define the Fukui  done by applying the variational principle for the energy (eq
function, f[pn,:T], to be the minimizing functiongmin(f), and 2), but here we outline an alternative. Suppose we are given an
define the chemical hardnesg,on,] as the minimizing value approximate N-electron densitypn,(F), for the molecule with
of the integral, #[pn,f]. These definitions agree with the external potentialy(r). Suppose furthermore that we know the
conventional definitions of these quantities (see Table 1). To exact ground-state densities for tHéy (+ 7)- and No — 7)-
confirm this, observe that the function which minimizes eq 11 electron systems with the same external poteftidlhen, if
identifies the way the density of a molecule changes when one pny(T) is the ground-state density for an external potenii@,
adds a fraction of an electron in a fixed external potential to which is an infinitesimal variation ofo(),3* and if 7 is small
give a new ground state. Therefore, enough, we may truncate the Taylor expansion (eq 6) at second

order, giving

(12) Edlongtd = & longd = &, [on] +
S @by = () + vo(F)) oy ) = By (F)) dF +

. [9en(T)
fleng 7T =58,

in agreement with the original definition of Yang and Parr. 1 o Y % (w =y
Using eq 12 and applying the chain rule for functional lszn[p,\,o,r,r HPngo(T) = Py (T (ogoT)
derivatives to eq 11 gives the chemical hardness, Z)NO(T'))} dr dr’

(15
5%, Jon] (90,1 (90T Eolon,—d = &, lon- = &, [on] + [ (Wlpy] — 7(7) +
non] = [ [\ y dr dr’ . N s e g o 1 s,
0p(FYop(M\ N Jr\ N v, Vo (org, o(F) = By () OF + Y, [ [0l 7.7
B (BZEO) {(ony-o(T) = Bry (Mo, —(T") = By (7))} dT dF”
~lone),,

in agreement with the definition of Parr and Pear$&imally,

by choosingr = 1, enforcing the normalization constraint on  2¢, [py ] = Eglpn -] T Eolon 42

eq 11 with the Lagrange multiplier;2and minimizingy[ pn,;d] o ° °

with respect tog(F), one obtains the known resis2 - f {(ulpy] — 7(7) + vo(F))(on4(T) — o (F))} T

N, (13)

Again, see Table 1 for notation. Adding the two egs 15 and
rearranging terms gives

o] = ff[PN Flylpy ¥, F'1dT (14) - f{(ﬂ[f’No] = () + vo(F))(on,—T) = o (F))} dF
= o f [ nlpn T T H (ongeo(F) = oy (P opgio(F) —

The master problem of density functional theory is to find the

ground-stateNg-electron density for the molecule withlp pNo(r )} dr dr
electrons in the external potentig(r). This task is ordinarily N
—Y P 7T ) — o (T ) -
(25) Chattaraj, P. K.; Liu, G. H.; Parr, R. @hem. Phys. Lettl995 fon[pNO ]{(pNO_T( ) pND( ))(pNO_T( )
#%%8) Chattar - - BTN} dF dT”
(26) ChattargjP. K. Proc. Indian Natl. Sci. Acadl996 62A 513. 0
(27) Chattaraj, P. K.; Cedillo, A.; Parr, R. @®hem. Phys1996 204,
429, (16)
(28) Pearson, R. Gl. Chem. Educ1999 76, 267.
(29) Yang, W. T.; Parr, R. G.; Pucci, B. Chem. Physl984 81, 2862. In analogy with eq 11 we define a hardness functional:
(30) Berkowitz, M.; Parr, R. GJ. Chem. Phys1988 88, 2554.
(31) Chattaraj, P. K.; Cedillo, A.; Parr, R. G. Chem. Phys1995 103 (33) If we do not know the exacN(+ 7)- and (N — 7)-electron densities,
7645. we can get them by minimizing, [ pn,+-] and e, [pn,—] in €q 15 subject to

(32) Ghosh, S. KChem. Phys. Lettl99Q 172 77. constraints thay png+:(f) = No + 7 and fpny,--(F) = No — 7.
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_ o Bl (P = 2, [on (F)] + Egloy,—o(F)]
,on) = 2

_ 1.
‘L’2

’ St = 50+ v ogT) = BT A

+ [l = 70) + ooy ~ (P o7

1 [ T T NoglT) = B o) = B (7) O T
| 1 [ [ g T Ny -o7) = Do) = B (7)) o T’

17)

Equations 16 and 17 provide different ways to find the
ground-state density. We can use the second Hohenris@rign
theorem and minimize,,[pn,] (€q 16) subject to the constraint
that N[pn,] = No. Equivalently,we can find the ground-state
Ng-electron density for the system with external potentyéi)
by maximizing the hardness functiongl,[ pn,| (€q 17), subject
to the constraint that f{pn,] = /Pn(T) dF = No. Since theNo-
electron density that maximizeg,[pn,] is simply the exact
ground-statéNp-electron density for the system, eqs 12 and 13
show that, at the maximum,

(pN0+r(?) - f’NO(?)) - (pN0+r ) - PNO(?)) = Tf[PNO;?]

7 [Bn] — nlon)

()

We conclude this section by considering the perhaps puzzling
question of why one minimizes the hardness functional of eq
11 and maximizes the hardness functional of eq 17. Define the
generalized hardness functional,

Ny [P0, -] =
b, [P, o] = 26, [P (1] + &, [Py o(T)]

T2

lim

—0"

(19)

where pngtr, PNy andpn,-—- are No + 7)-, No-, and No — 7)-
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Figure 1. Variational principle for the Fukui function: (a) minimum
and (b) maximum hardness principle. The dashed lines represent the
unoptimized calculations, while the solid lines represent the solution
from the variational principlesy is the curvature of the plot at the
midpoint. (a) In the variational principle for the Fukui function (eq
11), loweringe, [ on+:] ande,[on-.] decreases the hardness. (b) In the

electron densities, respectively. Equation 11 is the special caseyariational principle for the density at fixed (eq 17), lowering,[on]

of eq 19 in whichpn, = pnoexact HENCE, Minimizing the energies
of the No + 7)- and (No — 7)-electron systems amounts to

increases the hardness.

minimizing the hardness functional in eq 11 (see Figure 1a). the normalization constraint with a Lagrange multiplier,
On the other hand, eq 17 represents the special case of eq 18hereby introducing the grand potenti&f,

wherepn,—+ = PNy—r.exactdNAPNg+r = PNgir.exace AS earlier noted
by Zhou and Parf? in this case minimizing the energy of the

Q, [pl = ¢, [p] — N[p]u (20)

No-electron system equates to maximizing the hardness (see

Figure 1Db).

IV. Principles Governing Multicomponent Systems

In the foregoing, we have concentrated on minimizipgp]
subject to a fixed\y = fp(F) dr. Alternatively, we can force

(34) pn,(T) must bev-representable because the functional derivative in
row 5 of Table 1 does not exist unlesgpn,f] is defined. In addition,

Minimization of the grand potential at constantepresents an
alternative variational principle to eq 2. Stating this result
formally, let p,,(F) be the ground-state density afZh[p,,] the
ground-state grand potential for the system with chemical
potential uo and external potentialo(r). Let p, () be a trial
density that also has chemical potential Then

Q,[5,] = Q,[0,] = l0,] (21)

Pn,(F) must be close enough to the true ground-state density for the truncated . . . .
Taylor series expansion to be accurate. These two assumptions, coupledn this scheme, changes in particle number are induced by
with the assumption that if two external potentials are close together the changes iru, the chemical potential (see Table 1). There are
ground-stateN-electron densities for those potentials will also be close two ways to effect an increase in the number of electrons in
together (i.e., we assume thalpf,(F)/0vo(F"))n=N, EXiStS), recovers the o . . .

the system: either add electrons directly (incrédser increase

condition stated in the text. = 1S
(35) Parr, R. G.; Gsquez, J. LJ. Phys. Chem1993 97, 3939. the electronegativity (decreag, thereby driving the system
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Table 2. Summary of Notation for Section IV

quantity definition and symbol notes and key concepts
1 particle number Q2
V=G
Vo
2 softnes$ 92Q the softness is the reciprocal of the
=\ hardness (see Table 1, row 2),
ou” Jvyr) S=1ly
3 local softnes®¥-3® _ 9o(T) ON site reactivity index; related to the
§(7) = ( 3 ) = _(6 (?)) Fukui function (Table 1, row 3)
% Yoll)]u by s(f) = S{F); local version of
the hard/soft acid/base principle
4 local hardnes8** = du[p] compare this definition to that of the
n(7) = m local softness
5 first functional 0Q, [7] this result is obtained from eq 20,
derivative c[p;T] = —‘L =vy(T) — v[p;T] — N[pln[p;T] Ta;ble 1, previous definitions in
op(T) this table, andN[p]/dp(F) = 1;
When,T)(F)’is the ground-state’
density, the first two terms cancel
6 second functional 5°Q, 7] onlpiT] this result is obtained from the
derivative PR Yo — I3 F T — i[5 F] — o [5F — NI ! definition of Q,, [ p], results from
lpir. = 0p(T")0p(T) el = lpiT] = mlpi] = N7 op(T") Table 1, and results from this table

to take electrons from its surroundings. Using eq 20 amounts Assuming that is small enough, the Taylor expansion can be
to changing the basic variables describing the system fdlom truncated at second order, yielding
andvo(F) to u and v(r).36:37
Chemical reactions involve systems whose components = T ) df
interact strongly with one another (e.g., functional groups within Q, [0y, T Apsd = Qlp, ] + fg[P#O- FlAp () dr +
a molecule, molecules in solution, etc.). In such systems, the 1/2ffg[pﬂ T AP (T)Ap, (T AT AT’ (22)
indistinguishability of electrons prevents one from assigning °
them to any particular component, rendering the number of |y deriving eq 22, we have replaced functional derivatives of
electronsNc, in a particular component ill-defined. Hendd, Q,.[p] with notation from Table 2. The variational principle
and vo(f) are not the most suitable variables for dlscussmg a (eq 21) implies the followingthe best way to change the density
component of a system. On the other hand, electronegativity 55 the chemical potential increases framito o + 7 is found
equalization ensures that is a global quantity; hence, the  py minimizing the functional
chemical potential of a particular component, is uniquely
defined. Consequently,. andv(r) are highly suitable variables _ - .
for discussing an indi{x/lifjual component of a system. In analogy S L T fg[pﬂo, FlAp.(T) dT +
to the situation described in section Ill, we expect that 1 = = =N\ AT AT
understanding ho,[ o] changes as the density and chemical /fog[pﬂo, P 180, (T)Ap.(T) AT dT" (23)
potential change will yield insight into chemical reactivity. Table
2 lists and characterized quantities associated with this approac
For a system consisting of strongly interacting components,
the most reactive components are apt to be those most sensitive ap (F)
to changes in the chemical potentialSo we may begin to Sp, :F] =( Puq ) (24)
understand chemical reactivity for systems of strongly interact- Pug T = au v,
ing components by addressing the following questidow does
the density change when we increase the chemical potentialAccordingly, just as eq 11 provides a variational method for
(decrease the electronegaty) while keeping the external  determining the Fukui function, eq 23 provides a variational
potential (nuclear configuration) of the molecule fixed? method for determining the local softness.
Let p,,(F) be theexactground-state density for a system with Choosingr < 0 generalizes eq 23 to decreases in chemical
external potentiabo(r) and chemical potentialp. What happens  potential,
when the chemical potential increases a small amott,

pSubject to the constraint thad p,(F) + Ap+(F)] = uo + 7. The
solution to this minimization ig times the local softnes$:38

(36) Nalewajski, R. F.; Capatani, J. . Chem. Phys1982 77, 399. QVO[P#O + Ap_(T)] — QO[P#O] = IG[P”O; r1Ap_(T) dr +
(37) For atoms and molecules,= (dE/oN),, increases monotonically 1/ A A dF d o5

with N. This is important since it ensures thauaan be expressed as a T, T TAp_(T)Ap_(T") dT dT’

function of N, which allows one to usg as a “stand-in” forlN. szg[p‘“[) 1Ap T( JAp r( ) (25)
(38) Yang, W. T.; Parr, R. GProc. Natl. Acad. Sci. U.S.A985 82,

6723. The function which minimizes eq 25 subject to the constraint
(39) Mendez, F.; Gaquez, J. LJ. Am. Chem. S0d.994 116, 9298. that u[p.o(T) + Ap—o(F)] = uo — T is —‘ES[pM,;T"].

(40) There are many different definitions of the local hardness; the one . s L .
used in this paper is merely convenient for our purposes. See ref 30 for a ,E_qu.'v_alent to mlnllelng eqs. 23_ and 25 separately is
more detailed discussion of this ambiguity. minimizing them together; i.e., minimize

(41) Liu, S.; Parr, R. GJ. Chem. Phys1997 106, 5578.

(42) When the attacking species is soft, the most reactive components ¥V — )] =
are apt to be those most sensitive to changes in the chemical potential. OnQ"o[p/‘O + Ap“( Pl ZQo[p#O] * QVo['oﬂo * Ap_f( Pl
the other hand, when the attacking species is hard, the hard/soft acid/base - . g 1 = =y
principle indicates that the most reactive components will be those of similar fg[P,u[)’ F1(Ap;(F) + Ap_(F)) dF + /szg[/oﬂo- P x
hardness. The statement in the text is often appropriate for discussions of - — — — — gy
covalent bond formation when the reactants are not ambidentate. {Ap (T)Ap(T") + Ap_(T)Ap_(T')} dT dT" (26)
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subject to the following constraints:
(1)
@

ulp,(F) + Ap_(F)] =uo— 7
ulp, (F) + Ap (F)] =up+ 7

We may add another constraint, but it will increase the minimum
value (and hence change the minimizing function) unless the
constraint is satisfied at the solution point. However,

®) Ap,(F) = —Ap_(F)

is satisfied at the solution point, whetg.(f) = v p,,T] =
—(=t9pugfl) = —(Ap—(F)).

Constraint (3) simplifies the minimization. Now one mini-
mizes

Q, [p, + Ao — 290, ] + L, [0, + Ap_(T)] =
S [clon T T 1Ap, (T)Ap(T7) dF dF'z (27)

subject to the constraint thafp,,() + Ap+(F)] = uo + 7.

Since changing only scales the solution from eq 27, we
chooser = 1. Since—S = (32Q/9u?),,|.,, We may regard eq 27
as a “softness functional”. Restating our results from this
perspectivethe local softness is the functioAp.1(F), which
minimizes

S, D042 ()] =
[ [lp T T 180, (F)Ap,o(T) dF dF" (28)

subject to the constraint that p,,() + Ap+1(F)] = o + 1. At
the minimum,—S,[p.,,Ap+1(F)] becomes-Yp,,]. Moreover,
since the chemical softness is a nonnegative quantity, minimiz-
ing —Sis equivalent to minimizing the reciprocal of the softness,
n.
Suppose we do not know the exact ground-state density for
u = up and external potentialy(f), but only anapproximate
density with chemical potentigb, p,,(f). Furthermore, suppose
that we know the exact ground-state densities for the external
potentialvy(f) with chemical potentialgo + 7, put-(r),*3 and
that p,,() is the ground-state density for an external potential,
»(F), which is very close tao(f).** Then, for sufficiently small
7, the power series expansions fy,[p,,£.] centered on the
densityp,,() may be truncated at second order. While one can
find a variational principle for the ground-state density by
performing a derivation like eqs 38L7 in section I, we avoid
this by modifying eq 26-now, instead of trying to find the
correct density for = uo & 7, we are trying to find the correct
density foru = uo. Accordingly,the exact density with external
potential vo(f) and chemical potentiako may be obtained by
maximizing

Qolp,, + Ap(T)] = 29, [5, ] + Qlp,, + Ap_(F)]
=S5,

S <l TUAB(T) + Ap_ () dF +
Uof [lpiT T UARL(T)ABL () +
Ap_(F)AB_(T") dT dF' (29)

subject to the constraint that[p,] = uo. In eq 29 we have
defined Ap+.(1) = puE:() — Pu(F). Since the softness is
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Figure 2. (a) Variational principle for the local softness, minimizing
—S. (b) Parr-Chattaraj maximum hardness principle. The dashed lines
represent the unoptimized calculations, while the solid lines represent
the solution from the variational principles:Sis the curvature of the
plot at the midpoint. (a) In the variational principle for the local softness
function (eq 28), loweringQ,[p.+] and Q,[p.—.] decreases—S
(equivalently, the hardness). (b) In the variational principle for the
density at fixed: (eq 29), loweringk2,[p,] increases-S(equivalently,
the hardness).

positive, maximizing—S is equivalent to maximizing the
hardness. Arguments similar to those at the close of section Il
explain why one minimizes-Sin eq 28 but maximizes-Sin

eq 29 (see Figure 2).

Extending a result that was originally inferred by Zhou and
Parr in the context of Htkel theory?:24 Parr and Chattaraj
proved that, at constant chemical and external potentials, the
ground state of a system has greater hardness than any nearby
state which can be reached by an infinitesimal change in the
external potentiat? Since we have made the same assumptions
in our derivation of eq 29 and since maximizir@is equivalent

(43) A comment similar to note 33 applies here: we can use the Taylor
series expansion centered pp(r) to find an expression fof2,[p,,+:]
that can be minimized to fing, £(r).

(44) Similar to the comment of note 34, what is required is fhaf)
bev-representable (the functional derivative in row 5 of Table 2 is undefined
unlessvo[p,,;T] is defined) and also close enough to the exact ground-state
density for the second-order truncation of the functional Taylor series to
be accurate. Assuming thatd,,(r)/ovo(r")).=«, €Xists, the condition stated
in the text is equivalent to these requirements.
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to maximizing the hardness, eq 29 is equivalent to the maximum to converge may be relaxed by including higher order terms in

hardness principle of Parr and Chattaraj. the Taylor series expansion. In the limit where the Taylor series
Sebastian has questioned the validity of the P@fmattaraj is not truncated at all (and assuming the series converges), we

proof#®While the validity of the ParrChattaraj proof has been  find expressions for the universal functionals:

defended??” the dispute makes it desirable to find a straight-

forward derivation of the PafrChattaraj maximum hardness Eolon +.(T)] — 2¢, [y (T)] + Eglon —.(T)]
principle. The present derivation (along with Figure 2b) achieves 7, [f)NO] = ° 2 2° °
this goal. ¢ T
VI. Conclusions 8,05, Qoloyg+d — 29,16, + Ldlp,,—] 1)
-3 0p,1=
In this paper we have used the basic variational principles of o 7

density functional theory, eqs 2 and 21, to develop variational
principles for quantities of importance in the theory of molecular in terms of quantities related to the trial density.
reactivity. We have elucidated two variational methods for ~ The variational principles (1) and (2) may prove useful

determining the ground-state density: computationally, but of greater general interest are the funda-
(1) Maximum Hardness Principle (Zhou and Parr)2° The mental maximum hardness principles which follow from eqgs

exact ground-state density is the function which maximizes the 30 and 31.

hardness functionaf}, [pn,] (€q 17), subject to the constraints (1) Maximum Hardness Principle (Zhou and Parr).2° The

that fpng(F) dF = Np and that the trial densitiegin(r), are best way to arrangk electrons in the external potentiah(r),

ground-state densities for external potentials close to that of is that which maximizes the chemical hardness (eq 30) (see
the system of intere§f. When evaluated at the solution point, Figure 1b).
vo[Pno] €quals the chemical hardness. (2') Maximum Hardness Principle (Parr and Chattaraj). 22

(2) Maximum Hardness Principle (Parr and Chattaraj).22 The best way to arrange electrons in the external poteng(a),

The exact ground-state density is the function which maximizes at chemical potentialo is that which maximizes the hardness
the softness functionali-S,[5.] (€q 29), subject to the  (or, equivalently, maximizes-S (eq 3J) (see Figure 2b).
constraints that[p,] = 1o and that the trial densitie,(r), Pearson has proposed that hardness measures the stability of
are ground-state densities for external potentials close to thata molecule!® The variational principles support this result. Given

of interest*4 At the solution point,—S,O[f)m] is the negative of vo(f), @ molecule is most stable for the ground-state density. In
the softness. Maximizing S,,[p,,] is equivalent to maximizing ~ the energetic formulation, one finds the ground-state density
the hardnessg; = —(1/—9). by minimizing the total energy (eq) when the number of

We have also developed variational principles for the two electrons is fixed and by minimizing the grand potential (eq
basic predictors of molecular site reactivity within a density 20) when the chemical potential is fixed. By contrast, maximiz-
functional theory description: the Fukui function and the local ing the hardness gives the ground-state density in the case in
softness. which N is fixed andin the case in whichu is fixed.

(3) Variational Principle for the Fukui Function (Chat- On the other hand, a moleculkl, is less stable when one
taraj, Cedillo, and Parr). 3L The Fukui function is the function ~ optimizes the density of the molecular catid#;, and anion,
which minimizesy[pno;Ap-1] of eq 11 subject to the constraint  M~, since decreasing the energy penalty for removing an
[Ap+1(F) dF = 1. When evaluated at the solution point, electronand increasing the energy payoff for adding an electron

nlon,;Ap+1] becomes the chemical hardness. makes the disproportionation reaction,

(4) Variational Principles for the Local Softness (Present
Work). The local softness is the function which minimizes 2M—M"+ M~ (32)
—SlpuaAp+1(F)] (g 28; eqs 23 and 25 provide alternative
variational principles), subject to the constraint thpd, (1) + more favorablé? Since variational principle8 and4 indicate
Ap+1(T)] = uo + 1. At the solution point;—S[ou, Ap+1(M)] that the best way to change the number of electrons or the
equals the negative of the chemical softness. Minimizit®js chemical potential oM is the way that minimizes its hardness,
equivalent to minimizing the hardness, we find agreement with the assertion that small hardness means

Variational principles (3) and (4) are exact because their decreased stability.
solutions are infinitesimal quantities (eqs 12 and 13; eq 24) and  Suppose we are given two reactant molecules, L and M, with
infinitesimal changes are treated exactly by the second-orderhardnesses, andsyy, respectively. If;. andny are small, we
truncation of the Taylor series. The accuracy of variational would predict that the reactant molecules are relatively unstable
principles (1) and (2) depends on the validity of the second- and that a chemical reaction between the species L and M is
order truncation of the Taylor series; this truncation is accurate likely to occur. To predict where bonds form and break, we
only when the trial densities are ground-state densities for need a reactivity index that is a function of position. From
external potentials close to the external potential of intéfedt.  section IlI, the Fukui functiond, (f) andfy(F) indicate the best
We may remove the restriction to densities that are ground statesyay to change the numbers of electrons in the molecules L and
for some external potential by using a constrained search M. Hence, the Fukui function indicates the propensity of the
formulation of density functional theory to “assign” external density to deform at a given position in order to accept/donate
potentials to all densities. (Lieb’s constrained-search formal- electrons. We expect bonds to form between those parts of L
ism;*® which explicitly maps densities to an external poterftial, and M which most readily accept/donate electrons. Therefore,
is particularly useful.) The restriction that the trial density be we expect bonds to form between regions of L whig(®) is
close enough to the solution for the second-order Taylor serieslarge and regions of M wher&, () is large’!! This leads

(45) Sebastian, K. LChem. Phys. Lettl994 231, 40. naturally to the fc_>||owin_g ques;ion; How does one a_ssign a

(46) Lieb, E. H.Int. J. Quantum. Chenl.983 24, 243. value of the Fukui function (which is inherently pointwise) to

(47) Colonna, F.; Savin, Al. Chem. Phys1999 110, 2828. a “region” in a molecule? A natural method is to introduce the
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so-called “condensed Fukui function”, by which one affixes a  The grand canonical ensemble works well at nonzero tem-
Fukui “index” to each atom in the molecule by partitioning the peratures, giving well-behaved, fully differentiable density
molecule into atomic contributiorf§ The net effect is to convert  functionals. However, in the limit of zero temperature the plot
the point-by-point site reactivity information of the Fukui of energy versus particle number is no longer smooth, consisting
function into (often more useful) information about the pro- instead of straight lines connecting the ground-state energies
pensity of a molecule to react at a particular atomic site. of integer numbers of particles. LBtbe an integer and be a

The situation is more complex when the system consists of real number between 0 and 1, inclusive. Then, in the zero
many interacting components with hardnesgesyg, 7c ... and temperature limit of the grand canonical ensemble,
Fukui functionsfa(r), fg(r), fc(f) ... . In this case, molecule B
may have a small value of the hardness (and hence enhanced[N + 6,v] = (1 — O)E[N,vo] + SE[N + 1,1
global reactivity) but no placesg, wherefg(rs) is especially
large (and hence no especially reactive sites). On the other handp[N + 0,5 = (1 — 6)p[N,vg + Op[N + 1]
molecule C may have a large value of the hardness but an

especially reactive sit&c, wherefc(rc) is large. The situation (A1)
is complicated still further by the hard/soft acid/base prineiple _JEIN+ 1yl —E[N,v] 0<6 <1
molecules tend to react where the Fukui function is the Iargest”[N + 0w = undefined 0=00=1

when attacked by soft reagents and in places where the Fukui
function is smaller when attacked by hard reagents.

In this case, the key site reactivity indexes are the local N+ §pd= 0 0<o6<1
softnesses(r), ss(r), sc(F) ... and the key principle is the local ! Vol = undefinedd =0,0 =1
hard/soft acid/base principle of Mdez and Gaquez3® Suppose
we add a molecule Q, with reactive siigand a local softness These equations reveal that number increasing and number
of so(Fo) at the reactive site. Q will tend to react with the species decreasing variations in the density are now fundamentally
(A, B, or C) whose local softness at the reactive sisg(fa), different in nature; hence, the functional derivatives from above
s8(Ta), or sc(Fo)) is closest tao(To). Itis clear that the analogue and below are no longer equal, and we must use one-sided
of the condensed Fukui function indexes, the “condensed local functional derivatives (eq 9).

softness indexes”, may be helpful for deciphering reactivity =~ The results in the body of this paper depend on the existence
patterns. of all functional derivatives and hence are valid for temperatures

greater than zero (though all the derivatives should have a

Ad(nov\”edgment_ This research has been Supported by a notation affixed to them to indicate that they are to be taken at
grant from the Petroleum Research Fund of the American constanttemperature). If one prefers to consider the case of zero

Chemical Society. P.W.A. is a graduate fellow of the National temperature, one constructs a smooth interpolation between
Science Foundation. integer numbers of electrons. While this is possible, such

interpolations have undesirable features. Smooth interpolations
generally fail to predict the correct dissociation products for
bond-breaking reactions, predicting that fragments retain frac-
tional numbers of electrons (and hence partial chartfes).
We should discuss the validity of the idea of adding and However, molecules dissociate into neutral atoms.
subtracting a “fraction” of an electron from the system. Though ~ Should one prefer the zero temperature grand canonical
there are no real “pieces of an electron”, the idea of a “piece of ensemble description, one must disregard section 1V altogether;
an electron” is necessary in order to define functional derivatives the chemical potential can no longer be used to change the
since eqs 3 and 4 require considering variations in the densitynumber of particles in the system. (A given value of the
which change the number of particles by nonintegral amounts. chemical potential corresponds to either an infinite number of
Moreover, if one defines the number of electroNggen in an different systems (all those with particle numbers betwien
open system like a functional group within a molecule, the andN + 1) or no systems at all (see eq Al); hence, the change
number of electrons will generally be nonintegral, rendering of variables from I,vo(r)) to (u,vo(r)) is invalid.) However, by
fractional numbers of electrons a necessary concept for thisseparately considering changes in the density which increase
circumstance. the number of particles (functional derivatives from above) and
A common approach for extending DFT to nonintegral changes in the density which decrease the number of particles
numbers of electrons uses the grand canonical ensemble. Thaffunctional derivatives from below), one salvages section lIl.
is, one imagines putting many replicas of a system in a box For example, eq 11 splits into an equation in which the
with constant chemical potential and temperature and allowing functional derivatives are taken from above,
the replicas to exchange electrons. While each replica has an
integer number of electrons, the average number of electrons ,+r, - — tro - =\ 7 7
per replica need not be an integer. By using this “average 7 loniApd = ff’? [oni TP 1Ap4(F)Ap(T') T dF
number of electrons” as a stand-in for the physical number of (A2)
particles, one extends density functional theory to nonintegral o . o
numbers of electror®. This method goes back to Gyftopoulos and an equation in which the derivatives are taken from below,
and Hatsopould8 and Mermin®!

Appendix: Dealing with Systems with a Nonintegral
Number of Electrons

(48) Yang, W.; Mortier, W.J. Am. Chem. Sod.986 108 5708. " [pNO;Apff] = ff’? [pNO; P, Ap_(T)Ap_(T) dT dF
(49) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, JPhys. Re. Lett. (A3)
1982 49, 1691.

50) Gyftopoulos, E. P.; Hatsopoulos, G.Roc. Natl. Acad. Sci. U.S.A. . . .
19é5 %0,y78£_ P Corresponding to eqs A2 and ABere will now be two different

(51) Mermin, N. D.Phys. Re. 1965 137, A1441. solutions to the variational principle for the Fukui functibn:
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In accord with eq Al, the hardnesses from above and below
are zero. The other major result from section Ill is eq 17, which

becomes
By — 26, [ (D] + Eoloy, (7))
i, [Pon] = 7
T
_1
'L'2

S @ o) = 50) + v ogoF) = (1) 07
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1 [0 g T T Nong o(F) = Bry(Po,-(T) = (7)) AT T’

As)

Ayers and Parr

The construction of a zero temperature grand canonical
ensemble has some benefits. For instance, consider the equation
for the density in eq Al. Rearranging, we find

PN + 7vgl — p[N,vg]
T

= (o[N+ Lwg] = p[N:vg]) (A6)

Since in eq A6 the differential Fukui function (for vanishingly
smallt) is equivalent to the finite difference approximation with
7 =1, it follows that the smalt constraints pervading section
IIl are no longer necessareqs A2-A5 are exact for allr
between 0 and 1. Of particular interest is the effect that this
has on eq A5; while the maximal function is always the correct
ground-state density, the maximizing value depends, treing

(ut — u)lt = (IP — EA)/r, where EA= —u™ is the electron
affinity and IP= —u~ is the ionization potential. Far= 1, eq
A5’s maximum value agrees with the finite difference result
commonly used as an approximation to the hardfess.
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